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Abstract. We have calculated single-differential energy spectra of electrons emitted in swift-ion-atom
collisions on the basis of the classical Bohr theory allowing for various extensions. Special emphasis has
been paid to scaling relationships which are inherent in the Bohr theory but would not emerge from sim-
ple Coulomb scattering or conventional binary-encounter theory. We consider electrons emitted from the
target as well as the projectile. In addition to electron binding, which is known to be treated well in the
Bohr theory, we allow for orbital motion of target and projectile electrons and apply a feasible description
of the screened interaction of partially-stripped projectile ions. Predicted scaling laws as well as absolute
estimates are compared with experimental data.

PACS. 34.50.Fa Electronic excitation and ionization of atoms (including beam-foil excitation and
ionization) – 52.20.Hv Atomic, molecular, ion, and heavy-particle collisions – 79.20.Rf Atomic, molecular,
and ion beam impact and interactions with surfaces

1 Introduction

The phenomenon of ionization in ion-atom collisions is
closely related to the associated energy loss by the col-
liding ion. Indeed, most of the energy loss suffered by a
swift ion in the collision with an atom at rest goes into
the energy of emitted electrons, except in very soft inter-
actions. In Bohr’s classical treatise [1], careful distinction
was made between energy loss and ionization, yet the two
phenomena were treated in parallel throughout the perti-
nent chapters.

With the increasing sophistication of experimental and
theoretical techniques, and a general trend toward special-
ization, awareness of this close connection has decreased
continuously, and very little use has been made of devel-
opments in one field to provoke progress in the other. This
striking feature becomes immediately evident from inspec-
tion of recent reviews, both of electron emission [2,3] and
particle stopping [4–6].

The present study has been stimulated by recent pro-
gress in the field of particle stopping, specifically the stop-
ping of swift, partially stripped heavy ions in matter.
While we do by no means have the ambition to compete
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with highly sophisticated and quite successful theoretical
treatments of doubly-differential spectra of emitted elec-
trons, we have some quite specific points in mind:

– any theory of particle stopping contains — implic-
itly or explicitly — a model for excited-electron spec-
tra. Explicit determination of such spectra and proper
comparison with experimental electron spectra pro-
vides a more stringent test on stopping theory than
a mere comparison of stopping cross-sections;

– systematic use of scaling relations, i.e., plotting phys-
ical quantities in terms of ‘natural’ variables is a well-
established technique in stopping theory. Not only does
this allow to test one’s understanding, even more im-
portant, it is a very useful tool for interpolation be-
tween experimental and/or theoretical data. We found
surprisingly little use of this technique in reported elec-
tron spectra going beyond fairly simplistic compar-
isons on the basis of Rutherford scattering;

– in radiation physics, especially the field of particle
tracks, information is needed both on energy loss and
energy spectra of liberated electrons. Input data for
Monte Carlo simulations are extracted from theory. It
is obviously desirable that the same theoretical scheme
serve as the pertinent source;

– the needs of radiation physics point in the direction of
a large number of combinations of projectiles and tar-
get materials of potential interest, while requirements
on accuracy are modest. The trend in atomic-collision
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physics — driving in the direction of full understand-
ing of the dominating processes — is opposite, favoring
few collision systems and high accuracy;

– most detailed information in ion-atom collisions is ach-
ieved by studying doubly-differential angle-energy dis-
tributions of emitted electrons. Conversely, for colli-
sions in dense material, angular distributions are of
little intrinsic interest because of frequent angular de-
flection of liberated electrons during slowing-down.

A common feature of the two considered fields is the fact
that dependent on ion-target combination and beam ve-
locity, successful theoretical treatments can be based ei-
ther on the Born approximation or one of its descen-
dents, or on some kind of classical-orbit theory. There has
been full awareness of the complementary regimes of va-
lidity of these approaches, briefly expressed by the Bohr-
Sommerfeld parameter κBohr = 2Z1v0/v, where Z1 is the
atomic number of the ion, v its speed and v0 = c/137 the
Bohr speed. According to Bohr [1], the classical regime is
specified by κBohr � 1, and the Born regime by κBohr � 1,
and in practice there is an overlap regime described by ei-
ther scheme with tolerable accuracy.

Our focus is on heavy ions, Z1 � 1, i.e., primarily the
classical regime at not too high beam speeds. In existing
treatments of electron spectra, classical arguments enter
at various stages of sophistication,
– straight Rutherford scattering,
– binary-encounter theory, i.e. Coulomb scattering tak-

ing into account orbital motion of target electrons, and
– classical-trajectory Monte Carlo computation.

Actually, only one of these tools makes explicit use of clas-
sical electron orbits.

In the field of particle stopping, the dominance of the
Born approximation over classical-orbit arguments has
been very strong for a long period, ever since the appear-
ance of Bethe’s classic paper [7], and it is only during the
past decade that the original Bohr theory [8] has received
attention again [9,10] and that Bloch’s scheme, which in-
corporates Bethe and Bohr theory [11] has been rederived
in a very transparent way and placed into context [12].
As a consequence, theory of heavy-ion stopping based on
classical-orbit concepts has developed substantially [5].

A prime feature of Bohr stopping theory is a rather re-
alistic model for binding of target electrons. While based
on Drude-Lorentz electron theory, it actually survived the
advent of quantum mechanics with a moderate adjust-
ment. Scaling properties implied by this model do not
simply emerge from Rutherford scattering or the binary-
encounter model. A substantial fraction of this paper will
be devoted to such scaling relations and to testing their
validity against both experimental data and theoretical
calculations.

Processes contributing to electron emission are well
known and well categorized [13,2,3]. Within the chosen
scope of this paper we must admit from the beginning
that there are several that we cannot treat. There is no
way to treat Auger electrons in a classical scheme, nor
can we treat electron capture into the continuum. How-
ever we can treat quasi-binary ion-electron interactions

over a very wide range of momentum transfers, taking
due account of orbital motion and binding forces, we can
do the same for projectile electrons emitted by collisions
with the target nucleus, and we have a way to describe
partially-ionized projectiles that is far more realistic than
conventional effective-charge models.

Our main theoretical tool is what we call binary stop-
ping theory [14,15], which we ask the reader not to mix
up with binary-encounter collision theory. Binary theory
is an expansion of the Bohr theory which, first of all,
takes into account the difference between particles and
antiparticles as projectiles, i.e., gives rise to terms uneven
in Z1, called Barkas-Andersen terms in stopping theory.
However, scaling relations predicted by binary theory fol-
low largely from the Bohr model. Therefore, considerable
space will be devoted to a thorough study of the implica-
tions of the Bohr model. We emphasize that Bohr himself,
in his 1948 review [1], refrained from exploring these prop-
erties.

This project dates back to the M.Sc. thesis of one of
us [16], who calculated differential and integral ioniza-
tion cross-sections from Bohr theory. Results were found
promising enough to be presented orally at a conference
on particle tracks1. A simultaneous attempt to apply bi-
nary theory was less successful because the PASS code im-
plementing binary theory needed substantial modification
before allowing to compute emitted-electron spectra. This
had been achieved in 2004, where a poster was presented
by the present group of authors [17]. Special attention was,
however, required to the treatment of projectile processes
which have only recently been incorporated into the PASS
code. Therefore, this is the first submitted paper reporting
our efforts in the area over five years.

2 Bohr theory

2.1 Bare ion on single-shell atom

2.1.1 Energy transfer

Bohr’s original theory [8] deals with the energy transfer
T (v, p) from a point charge in uniform motion to a single
classical electron, bound harmonically to a stationary nu-
cleus with an oscillator frequency ω and initially at rest.
Here, v is the projectile speed and p the impact parame-
ter. Bohr divided up the range of impact parameters into
regimes of close and distant interactions, where close col-
lisions obey the Thomson formula for free-Coulomb scat-
tering. Distant interactions, on the other hand, are char-
acterized as dipole excitations known from Drude-Lorentz
electron theory. From the asymptotic behavior at large ar-
guments, Bohr deduced that the effective interaction po-
tential is screened to within the adiabatic distance

aad =
v

ω
. (1)

1 EUNITT workshop, February 2002 in Caen.
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Fig. 1. Differential energy-transfer cross-section in dimension-
less units for a bare ion interacting with a harmonically bound
target electron. Dotted line: Bohr model; dashed line: free-
Coulomb scattering.

After introduction of dimensionless variables for impact
parameter, energy transfer and velocity,

ζ =
ωp

v
(2a)

t =
Tξ2

2mv2
(2b)

ξ =
mv3

Z1e2ω
. (2c)

we may summarize the Bohr model in the scaled form

t =
1

ζ2 + 1/ξ2
(close) (3a)

t = [K1(ζ)]2 + [K0(ζ)]2 (distant). (3b)

2.1.2 Differential cross-section

The differential cross-section for energy transfer (T, dT )
reads, in dimensionless units,

κ(t) =
∣
∣
∣
∣

2πζ

dt/dζ

∣
∣
∣
∣
. (4)

It is readily seen from equation (3) that the dimensionless
velocity variable ξ drops out after differentiation, and that
the differential cross-section reduces to a universal curve
independent of ξ, which is shown in Figure 1.

It is seen that unlike in the energy transfer, equa-
tion (3), it is not necessary to split collisions into close and
distant interactions, since the differential cross-section de-
rived from the Bohr formula (Eq. (3)) actually coincides
with the free-Coulomb cross-section at high t, i.e., in the
latter’s domain of validity.

Note that the maximum energy transfer Tmax = 2mv2

corresponds to tmax = ξ2 at a given projectile speed ac-
cording to equation (2). Evidently, even though the dif-
ferential cross-section obeys a universal scaling law in this

Fig. 2. Universal plot of the ionization cross-section of a single-
shell atom for a bare projectile ion in dimensionless units for
beam energies far above threshold. Bohr model.

approximation, the actual cross-section at a given value of
v or ξ is truncated.

We also may deduce from Figure 1 that significant de-
viations from free-Coulomb scattering must be expected
for T � 2mv2/ξ2.

We may convert the energy-loss cross-section into a
differential ionization cross-section dσ(ε)/dε by substitut-
ing

ε = T − U, (5)

where ε is the energy of a liberated electron and U its
binding energy.

2.1.3 Total ionization cross-section

For 2mv2 � U , the total ionization cross-section σion =
∫ 2mv2

U dσ(T ) may be approximated by σion � πp2
c for

2mv2 � U , where pc is the impact parameter at which
T = U . This assumes the energy transfer T to be a mono-
tonically decreasing function of p. In dimensionless units
this reads

ω2

v2
σion � πζ2

c , (6)

where ζc is a universal function of Uξ2/2mv2 shown in
Figure 2.

Significant deviations occur from the scaling behavior
indicated by Figure 2 in the threshold regime where 2mv2

comes close to U .

2.1.4 Scaling

From equation (2) and Figure 1 we may deduce that in
the Bohr model, the proper dimensionless measure of the
energy loss is the quantity

t =
Tξ2

2mv2
=

2mv2T

(�ωκBohr)2
, (7)

where κBohr = 2Z1e
2/�v is � 1 in the classical regime.
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The corresponding variable in the Born approximation
can be found e.g. by considering the scattering from a
Yukawa potential with the screening radius aad defined
by equation (1),

dσ(T ) = π

(
2Z1e

2

�ω

)2
du

(u + 1)2
(8)

with the scaling variable

u =
2mv2T

(�ω)2
, (9)

i.e., the limit of equation (7) for κBohr = 1. This en-
sures a continuous transition from the classical to the Born
regime.

2.2 Dressed ion on single-shell atom

2.2.1 Energy transfer

When the projectile ion carries electrons, its interaction
with the target electrons may be approximated by a
screened Coulomb potential. In reference [10], an ansatz

V (r) = −q1e
2

r
− (Z1 − q1)e2

r
e−r/asc (10)

was employed, where q1 is the charge state of the ion.
The general form of this relation was suggested by Brandt
and Kitagawa [18], but the screening radius asc was
taken in [10] as asc = (1 − q1/Z1) aTF where aTF =
0.8853a0/Z

1/3
1 is the Thomas-Fermi radius of a neutral

projectile. This expression was found on the basis of the
Fermi-Amaldi model of atomic ions. The classical energy
loss can be calculated in the dipole approximation and
reads [10]

T (v, p) =
2Z2

1e4ω2

mv4

{[

βK0(ζ) + (1 − β)K0(αζ)
]2

+
[

βK1(ζ) + (1 − β)αK1(αζ)
]2

}

, (11)

where β = q1/Z1 is the degree of ionization and

α =

√

1 +
(

aad

asc

)2

. (12)

Screening by projectile electrons affects mostly distant col-
lisions. The influence on close collisions will be seen in
connection with binary theory.

Figure 3 shows an example for β = q1/Z1 = 2/3. It
is seen that at large impact parameters, where only the
first term in the brackets in equation (11) is significant,
curves for different values of ξ merge and lie a factor of
β2 = 4/9 below the curve for the bare ion. All curves
merge for small impact parameters, as they have to with
the chosen ordinate variable. Deviations at intermediate
impact parameters reflect the different values of aad/asc.

Fig. 3. Scaled energy loss t = Tξ2/2mv2 versus scaled impact
parameter ζ = ωp/v for charge ratio β = q1/Z1 = 2/3 in the
Bohr model, distant collisions. Curves for ξ = 0.5, 5 and 50
calculated from equation (11). The curve labelled ‘asymptotic’
represents the energy loss of a point charge q1 = βZ1.

2.2.2 Differential cross-section

Figure 4 shows differential cross-sections corresponding to
the dotted curve in Figure 1 for charge ratios β = q1/Z1 =
2/3, 1/3 and 0, all of them being compared with that for
β = 1 from Figure 1. As follows from equation (11), the
simple scaling is broken, so curves for different ξ do not
any longer coincide at a fixed charge ratio. Nevertheless,
scaling is still approximately valid for q1/Z1 = 2/3 at all
t, and for q1/Z2 = 1/3 at least for t � 0.1.

3 Binary theory

3.1 Binding versus screening

The essential feature in binary stopping theory is the
replacement of a binding force by a screening function
in the potential. This is an appealing replacement, since
the pertinent quantity for stopping is the energy trans-
fer versus impact parameter, T (p), and since both bind-
ing and screening have the effect of reducing T (p) below
the Coulomb value at large impact parameters. Well-
established procedures are available for the solution of
binary scattering problems on a screened potential. There-
fore, the problem is reduced to finding an appropriate
screening potential as a realistic representation of the
binding force. Lindhard [19] used this view in his anal-
ysis of the Z3

1 correction to Bethe’s stopping formula. In
reference [14], two of us have demonstrated that the equiv-
alence of the two views is even more fargoing.

3.2 Bare ion on single-shell atom

3.2.1 Energy transfer

Following reference [19], the ion-electron Coulomb inter-
action is characterized by a Yukawa potential

V (r) = −Z1e
2

r
e−r/aad . (13)



M.S. Weng et al.: Primary electron spectra from swift heavy-ion impact 213

Fig. 4. Same as Figure 1 but for dressed instead of bare ion,
according to equation (11). Charge fractions β = q1/Z1 =
2/3, 1/3, 0 (top to bottom). Labels indicate the value of the
velocity measure ξ = mv3/Z1e

2ω. The curve labeled ‘Bare’ is
the dotted curve from Figure 1.

It was demonstrated in reference [14] that classical scat-
tering theory with the potential (13) rigorously reproduces
the first term in equation (3) at large impact parameters.
This term represents the energy transfer perpendicular to
the beam, i.e., the transverse momentum transfer which
dominates in distant collisions.

The second term in the brackets of equation (3) rep-
resents longitudinal momentum transfer. This term does
not emerge directly from binary scattering theory. In refer-
ence [14] it was interpreted as a potential-energy transfer
related to the angular momentum achieved by a target
electron in a collision. While there is no potential-energy
transfer in a free binary collision, the electron does achieve
angular momentum in the laboratory frame of reference,
and that angular momentum can be determined from scat-

Fig. 5. Differential cross-sections per target electron, calcu-
lated from binary theory for bare carbon and anticarbon ions
on helium, plotted in dimensionless units, equation (2) for
ξ = 0.5, 5 and 50. For clarity only few points are included.
Filled symbols: carbon; empty symbols: anticarbon.

Fig. 6. Same as Figure 5 for ξ = 1, 2, 5 and 10. Thin lines: bare
carbon ions on helium; thick lines: anticarbon ions on helium.

tering theory via the so-called time integral. In this man-
ner, the potential-energy term was likewise reproduced
rigorously from classical scattering theory.

Since both binding and screening become insignificant
at small impact parameters, results from binary scatter-
ing theory extrapolate toward free-Coulomb scattering for
close collisions. Successful tests were also performed on
intermediate impact parameters by comparison with Z3

1 -
terms in the Bohr theory.

3.2.2 Differential cross-section

Figure 5 shows differential cross-sections calculated from
binary theory for bare carbon and anticarbon ions for a
wide range of ξ-values. Comparison with Figure 1 shows
that the scaling properties implied by the Bohr model are
very well fulfilled at least on the scale of the graph.

Figure 6 shows the same information on a finer scale.
Two kinds of deviation from universal scaling are ob-
served:

1. there is a difference between carbon and anticarbon
ions for close collisions. In the field of particle stopping,
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Fig. 7. Energy loss per target electron versus impact param-
eter calculated from binary theory excluding (shell correction)
for C–He and ξ = 1. The curve labeled ‘Z1 = −6’ denotes
anti-carbon.

this is called the Barkas or Barkas-Andersen effect. The
magnitude of this difference in the mean energy loss,
as calculated from binary stopping theory, has been
shown to be in very good agreement with measure-
ments down to beam velocities well below v0 [20];

2. at low projectile speeds, for ξ = 1 and 2 in Figure 6,
peaks at the maximum energy transfer are observed.
The origin of this feature is illustrated in Figure 7: for
positive carbon ions, the energy loss initially increases
with increasing impact parameter and goes through
a maximum before decreasing monotonically. In the
binary theory, this effect enters through the potential-
energy contribution which is expressed by the angular-
momentum transfer which vanishes at zero impact pa-
rameter.
While we do not know the accuracy with which this
effect is described in the binary theory, we have no
reason to doubt its existence. Similar observations have
been made by Basko [21] in numerical simulations of
the genuine Bohr model.
While the effect will be smeared out by the shell cor-
rection to be discussed below, we need to keep in mind
that here is a possible source of error for the case
of hard collisions at beam velocities corresponding to
ξ � 2.

3.3 Dressed ion on single-shell atom

3.3.1 Energy transfer

Incorporation of static screening of the projectile into bi-
nary stopping theory follows the procedure outlined in the
previous section, except that it is scattering on the poten-
tial (10) that is to be modeled instead of a bare-Coulomb
potential. Correspondingly, the criterium of validity of the
procedure is quantitative reproduction of equation (11) for
distant collisions. The key to a valid description is a cor-
rect combination of static and dynamic screening. This is

achieved by the potential

V (r) = −q1e
2

r
e−r/aad − (Z1 − q1)e2

r
e−r/a, (14)

where
1
a2

=
1

aad2
+

1
a2
sc

, (15)

and asc is the static screening radius which depends on
the charge state.

An explicit derivation of equation (11) from equa-
tion (14) by binary scattering theory has been given
in [14]. As in case of the bare ion, this derivation involves
both the scattering angle and the time integral.

3.3.2 Differential cross-section

Figure 8 shows differential cross-sections calculated from
the simplest version of binary theory — excluding orbital
motion and emission of projectile electrons — for C6+,
C4+, C2+ and C0 incident on He at three different beam
energies. At the highest energy, 1.48 MeV/u, all cross-
sections merge at large energy transfers, but significant
differences are found for softer interactions. Conversely,
at the lowest beam energy, 0.109 MeV/u, the charge state
also affects close collisions.

Singular behavior near the maximum energy transfer
gets increasingly pronounced for lower charge states. It is,
however, restricted to a very narrow ε-interval.

Evidently, none of these dependencies can be charac-
terized by q2

1 scaling of the free-Coulomb cross-section.
This is in complete accordance with our experience from
stopping cross-sections [22] and equivalent experience in
electron spectra [23].

4 Inclusion of orbital motion

4.1 Kinetic theory

In binary stopping theory, orbital motion of target and
projectile electrons is treated as a transformation be-
tween moving reference frames in accordance with kinetic
theory [24]. Although relativistic relationships are avail-
able [25], they have not been applied in practice because
nonrelativistic relationships appear adequate in stopping
theory. This may not necessarily be true in electron spec-
tra, but we shall disregard this possibility here.

When applied to straight Coulomb scattering, kinetic
theory produces results equivalent with binary-encounter
theory [26], but the basic kinetic equations apply rigor-
ously to any binary interaction potential and, as they
stand, have proven successful in connection with bound
electrons. A recent example of a surprisingly accurate ap-
proximation to an exact result has been given in refer-
ence [27].

The derivations in [24] are restricted to the first and
second moment over the differential energy-loss cross-
section, i.e., the stopping cross-section and the straggling
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Fig. 8. Differential cross-sections calculated from binary the-
ory excluding shell correction for Cq1+–He at ξ = 50, 5, and
1, corresponding to ion energies 1.48, 0.319 and 0.109 MeV/u
(top to bottom graph).

parameter. In the following we shall briefly describe the
transformation of the differential cross-section itself. Sep-
arate attention needs to be paid to electrons emitted from
the target and the projectile.

Note that these relations do not make explicit reference
to binary stopping theory.

4.2 Transformation for target electrons

Consider the interaction between a projectile ion with a
velocity v and a free electron with a velocity ve. In the
notation of reference [24] the energy transferred to the
electron can be expressed as T = mv · (w′ − w), where

Fig. 9. Same as Figures 5 and 6 but including orbital motion
of the target electrons. Solid lines: bare carbon ions; broken
lines: anticarbon ions. Numbers denote the value of ξ.

w = ve−v and w′ = v′
e−v are the velocities of the target

electron before and after the interaction in a reference
frame moving with the projectile — i.e., the c.m.s. system.

For a velocity spectrum g(ve)d3ve, the contribution of
those electrons to the differential cross-section for scatter-
ing over a c.m.s. angle θ is given by

dσ =
w

v
g(ve)d3ve dσ0(w, θ), (16)

where dσ0(v, θ) is the differential cross-section for an ini-
tially stationary target electron, ve = 0.

With this, the differential energy-loss cross-section
may be written as

dσ

dT
=

〈
w

v

∫

dσ0(w, θ) δ
[

T − mv · (w′ − w)
]
〉

, (17)

where δ(. . . ) indicates the Dirac function and the brackets
an average over ve.

Evaluation in spherical coordinates leads to

dσ

dT
=

1
π

〈
w

v

∫
dσ0(w, θ)√

D

〉

, (18)

where

D = m2
[

w2v2 − (v · w)2
]

sin2 θ

− [T + mv · w(1 − cos θ)]2 . (19)

4.3 Implementation

The remaining integration over d3ve assumes isotropy of
the electron distribution. With this, two integrations re-
main. In [24], the most suitable integration variables were
found to be ve and w. An added subroutine to the PASS
code implementing binary theory allows numerical inte-
gration of equation (18) for a given dσ0(w, θ) and g(ve).

Figure 9 shows our standard example C–He at seven
values of the velocity parameter ξ. The velocity spectrum
g(ve) has been determined from hydrogenic wave functions
with the charge adapted to the measured binding energy.
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This procedure was also used to determine the majority
of the velocity profiles underlying our tabulation of stop-
ping force in reference [6]. As in Figures 5 and 6, data for
bare carbon and for anticarbon ions have been included.
As expected, a Barkas effect is seen in the close-collision
region which, however, is vanishingly small at the highest
velocity corresponding to ξ = 50.

5 Projectile electrons

All energy-loss cross-sections considered up to now may
easily be converted into spectra of emitted electrons by
means of the transformation (5) between the electron en-
ergy ε, energy loss T and binding energy U . This is not
so in the process of electron emission from the projectile.
Dependent on the desired amount of detail, this is a truly
complex process, as has been amply demonstrated in the
literature and summarized in reference [3].

5.1 The model

Bare of the ambition to describe angular spectra, we feel
justified, as a first approximation, to ignore three- and
four-body interactions in individual ion-atom collisions,
i.e., events where an electron emitted from a target atom
is deflected in the field of the projectile, and vice versa.

Moreover, we shall disregard binary collisions between
target and projectile electrons, or antiscreening. This phe-
nomenon is well established for collisions undergone by en-
ergetic neutral hydrogen beams, where the Coulomb inter-
actions of the projectile nucleus and the projectile electron
are equal. The effect becomes insignificant with increas-
ing Z1.

What remains is the possibility of excitation and emis-
sion of a projectile electron by the interaction with a target
nucleus which is modeled as a screened nucleus with the
total charge zero. The fact that the target atom is neutral
and the projectile atom charged has the a priori conse-
quence that projectile excitation rarely dominates, except
for Z1 � Z2: the screened Coulomb force of the target
atom tends to be weaker than that of a charged atom,
and the number of electrons ready for emission from the
projectile tends to be smaller from a charged projectile
than from a neutral atom. Moreover, those projectile elec-
trons tend to be more strongly bound.

In summary, emission of projectile electrons will be
treated in as close analogy as possible with the emission
of target electrons. The interaction potential will be given
by equation (14) with β = 0, and the number of electrons
on the projectile will be given by the charge state. How-
ever, care needs to be applied to proper transformation
of the kinetic equations from the projectile frame to the
laboratory frame of reference.

5.2 Stationary projectile electron

For orientation we first consider the case of negligible or-
bital motion of the projectile electron. Denoting variables

Fig. 10. Differential cross-section for electron emission from
projectile for neutral helium incident on carbon. Thin lines:
excluding orbital electron motion. Thick lines: including orbital
motion.

in the reference frame S′ moving with the projectile by
primes, the energy of an emitted electron reads

ε′ = 2mv2 sin2 θ

2
− U, (20)

where θ is the c.m.s. scattering angle in a binary collision
between the projectile electron and the screened (neutral)
target nucleus.

The direction of motion of the electron after the col-
lision is given by an angle φ′ = (π − θ)/2. This defines
the velocity vector, and after transformation back to the
laboratory system we find the electron energy

ε =
m

2
v2 − U + 2mv2 sin2 θ

2

− mv sin
θ

2

√

4v2 sin2 θ

2
− 2U/m. (21)

We may write the differential cross-section in the form

dσ(ε) = dε

∫

dσ(v, T )

× δ
(

ε − m

2
v2 + U − T + T

√

1 − U/T
)

, (22)

where T = 2mv2 sin2(θ/2), and dσ(v, T ) the cross-section
with the roles of ion and target interchanged.

Integration over T yields

dσ(ε)
dε

= K

(

v,
(x + U)2

2x + U

) −2x(x + U)
(2x + U)2

, (23)

where x = ε − (m/2)v2 and K(v, T ) = dσ(v, T )/dT .
The thin lines in Figure 10 show the cross-section for

electron emission from a beam of neutral helium atoms
interacting with a carbon target for a range of values of
the velocity parameter ξ. The two electrons on helium
are treated independently. With increasing ξ, i.e., increas-
ing v, the binding energy U becomes less and less impor-
tant, and hence the spectrum approaches a Dirac function
around mv2/2. Note the decrease in absolute magnitude
with increasing projectile speed.
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5.3 Projectile electron in orbital motion

Now consider a bound projectile electron moving with an
orbital velocity ue. In the laboratory frame of reference S,
its velocity is ve = v +ue. When this electron is scattered
on a target atom at rest, its velocity becomes v′

e with
v′

e · ve = v′e
2 cos θ. Going back to the moving frame S′,

and taking into account the loss of ionization energy U ,
we get a change in speed but not in direction of motion.

The differential cross-section reads2

dσ(ε)
dε

=
〈∫

dσ(ve, θ)
∫ 2π

0

dχ

2π
δ
(

ε − m

2
v′′e

2
)〉

ue

, (24)

where χ is the azimuthal scattering angle.
After successive insertion, the electron energy ε reads

ε =
m

2
v2 − U +

m

2
(v′

e − v)2

+ mv · (v′
e − v)

√

1 − 2U

m (v′
e − v)2

. (25)

This is again evaluated in terms of spherical coordinates
with ve as the axis. However, dealing with a five-fold inte-
gration, of which only one is reasonably straightforward,
the task to compute the differential cross-section is formid-
able. As a consequence, this new option in the PASS code
requires computation times several orders of magnitude
above all others: a spectrum of the type shown up till
now requires a fraction of a second, while a spectrum of
the present type requires an hour’s CPU time on an effi-
cient PC.

Figure 10 shows the He–C system studied both with
and without orbital motion. A very drastic difference is
observed. First of all, the narrow limits on the allowed
velocity range are wiped out by the orbital motion. Sec-
ondly, the spectrum attains a pronounced peak at an en-
ergy slightly below mv2/2. Thirdly, spectra level off only
slowly toward velocity zero.

6 Multiple-shell systems

Multiple-shell systems are treated according to the Bohr
scheme so that

dσ(ε)
dε

=
∑

j

Zfj

(
dσ(ε)

dε

)

j

, (26)

where Zfj, the number of electrons in the jth shell, is
determined from the spectrum of oscillator strengths fj

which satisfies the sum rule
∑

j fj = 1.

6.1 Input

Equation (26) applies to both target and projectile. Typ-
ically, the index j refers to a principal shell for inner elec-
trons and to a subshell for outer electrons. In the evalua-
tions below, we have employed data for fj , shell binding

2 Note the change in the velocity dependence of dσ(ve, θ)!

Table 1. Input parameters used in calculation of electron spec-
tra. Data from [6].

Element Z Shell Zfj �ωj Uj

He 2 1s 2.000 41.8 24.588

C 6 1s 1.992 486.2 288.2

2s 1.841 60.95 16.59

2p 2.167 23.43 11.26

Ne 10 1s 1.788 1525.9 869.5

2s 2.028 234.9 47.7

2p 6.184 56.18 21.564

Ni 28 1s 1.422 14346.9 8337.8

2sp 7.81 1532.28 903.01

3sp 8.385 262.71 84.88

3d 8.216 74.37 10.213

4s 2.167 23.03 7.6398

U 92 1s 1.047 180556.2 115606.0

2sp 5.526 30088.1 19732.0

3spd 15.709 6279.15 4162.13

4spdf 32.730 1120.62 704.71

5spd 18.066 127.44 164.15

6sp 8.542 48.08 27.325

7s 2.028 38.19 6.1941

6d 3.238 36.5 6.1

5f 5.114 32.94 6.

energies Uj and resonance frequencies ωj compiled in ref-
erence [6]. Data used here have been listed in Table 1.

6.2 An example

Figure 11 shows spectra for the He0–C system for a range
of ξ-values, with and without projectile excitation in-
cluded. It is seen that projectile excitation constitutes
an important contribution mainly in the region around
ε � mv2/2. The process of electron capture to continuum
(ECC) regime is commonly assumed in the literature to
contribute to this spectral regime [3]. The process treated
here, however, comes close to electron loss into the con-
tinuum. Indeed, the interaction cross-section for collisions
between a neutral target atom and a projectile electron
has its maximum for soft collisions in the moving system,
i.e., where the final speed of the projectile electron will
not be far away from the beam speed v, except for low
values of ξ, where the orbital electron motion dominates.

6.3 Scaling law?

We wish to explore the possibility that electron spectra
also in the multishell case obey the Bohr scaling relation.
To this end we first consider data for target excitation only
(Fig. 12). For the scaling variable t = (ε + U)ξ2/2mv2 we
need quantities ω and U for a multishell system. For ω we
employ the common definition from the Bethe theory,

ln ω =
∑

j

fj ln ωj , (27)
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Fig. 11. Electron spectra for He0 on C for ξ = 2, 10, 50. Thick
lines: target and projectile ionization. Thin lines: target exci-
tation only. Orbital motion included in all cases.

Fig. 12. Electron spectra for He0–C as in Figure 11. Target
excitation only. Upper graph: absolute units. Lower graph: di-
mensionless units. Both plots show the differential cross-section
per target atom.

and for U , we use the analogous expression,

ln U =
∑

j

fj ln Uj . (28)

The lower graph in Figure 12 shows the result. It is seen
that apart from a region around the cutoff, the soft-inter-
action portion satisfies Bohr scaling very well. Note that
for an absolute comparison with similar graphs such as
Figure 1 the curves would have to be divided by 6, the
number of electrons per carbon atom.

Fig. 13. Experimental spectra for C+–He from [28] in absolute
(upper graph) and dimensionless (lower graph) units. Labels
indicate the beam energy in keV/u.

The two Figures 13 show a similar comparison, but
now employing experimental data for the C+–He system
at five different beam speeds. Experimental data include
projectile processes which do not obey Bohr scaling in the
form obeyed by target spectra. Hence, deviations from
simple Bohr scaling must be expected. This is indeed
found, and from Figure 11 it is not surprising that de-
viations reach up to a factor of two. Nevertheless, the as-
sumption of Bohr scaling may be useful starting point in
establishing rough expressions for electron spectra where
measurements and detailed calculations are unavailable.

6.4 Comparison with experiment

Figure 14 shows a comparison of our absolute estimates
with measurements of Toburen et al. [28] on the C+–He
system. Also included are CTMC-calculations from refer-
ence [28]. Generally good agreement is found between our
calculations and the measurements in the region around
the cutoff. One could argue that this regime is the domain
of the classical binary-encounter theory. However, projec-
tile screening is an essential feature here, as is projectile
excitation at slightly smaller electron energies. Agreement
is reasonable also in the soft-collision regime, although in
almost all cases, the CTMC approach does slightly better.
We presume that this indicates the presence of collective
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Fig. 14. Comparison of measured with calculated spectra for C+–He. Experimental data from [28]. Calculations by binary
theory involving orbital motion of both target and projectile electrons. Calculations by classical-trajectory Monte Carlo quoted
from [28].

processes that are not allowed for in our description but
which are well-known to be visible in CTMC calculations.

Similar conclusions emerge from Figures 15 and 16 for
the Ni–He and U–Ne system, respectively.

7 Note on ionization cross-sections

Except for the behavior near threshold, the total ioniza-
tion cross-section is determined primarily by fairly soft
collision events for which Bohr and Bethe theory predict
equivalent results. While the present work suggests scaling
relations that do not seem to have been explored, we nev-

ertheless consider this topic somewhat outside the main-
line of this paper.

However, little opportunity has been given to check the
validity of our charge-state model. Therefore, we include
two graphs showing a comparison between measured and
calculated ionization cross-sections in their dependence on
the ionic charge state.

Figure 17 shows a comparison between calculated and
measured ionization cross-sections for 1 MeV/u F on Ne
and Ar. Electrons emitted from the target and from the
projectile are considered separately both in the calcula-
tions from binary theory (including orbital motion) and
in the experimental data (where charge states of recoils
and ions were analysed). Good agreement is found in both
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Fig. 15. Comparison of measured with calculated spectra for
Ni24+–He. Experimental data from [29]. Calculations by binary
theory of total, projectile and target electron emission includ-
ing orbital motion. Calculations by classical-trajectory Monte
Carlo quoted in the original paper.

Fig. 16. Comparison of measured with calculated spectra for
U32+–Ne. Experimental data from [30]. Calculations by binary
theory of total, projectile and target electron emission includ-
ing orbital motion. Calculations by classical-trajectory Monte
Carlo quoted in the original paper.

cases, except for low charge states where the theory tends
to overestimate measured ionization cross-sections. This
indicates that screening is more complete than what is
predicted from our description. We plan to follow up this
point further by looking in detail at the large amount of
pertinent experimental data that are available in the lit-
erature.

8 Discussion

General considerations as well as examples discussed in
this paper refer to the ‘classical regime’, i.e., experimental
conditions where κBohr = 2Z1v0/v > 1. While we have no
reason to doubt that there is a smooth transition to the
Born regime, we have not studied this aspect here3.

3 but have done so in great detail in connection with stopping
phenomena, cf. [32].

Fig. 17. Total ionization cross-section calculated from binary
theory versus ionic charge state, compared to experimental
data from [31]. Upper graph: 1 MeV/u F–Ne; lower graph:
1 MeV/u F–Ar.

Two conventional tools are available for the analysis
of electron spectra in the classical regime in addition to
straight Coulomb scattering: binary-encounter theory and
classical-trajectory simulation (CTMC). Comparing the
present scheme with the binary-encounter model, both al-
low for orbital motion, but unlike Bohr theory, the binary-
encounter model ignores all influence of binding on the
collision dynamics. This weakness does not apply to the
CTMC model which, however, has the weakness of lacking
transparency as any large-scale computational procedure.
In particular, there is no obvious way to extract scaling
relations of the type uncovered here from a CTMC simu-
lation code.

Our model utilizes a well-defined charge-state model
which, however, may have to be modified if a more de-
tailed study of ionization cross-sections should confirm the
trends emerging from Figure 17.

Electrons emitted from the target and the projectile
are calculated in separate procedures, and systems have
been studied where projectile electrons can by no means
be neglected. In the present version of our PASS code, pro-
jectile electrons require several orders of magnitude longer
computation times than target electrons. This is one rea-
son for our scheme to be considered more promising for
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systems where Z1 < Z2, for which target electrons tend to
dominate. Another reason is the fact that the scaling law
expressed by Figure 1 may be optimally fulfilled for such
systems, cf. Figure 9.

An important distinction between binary stopping the-
ory and Bohr theory is the incorporation of the Barkas-
Andersen effect in the former, i.e., the presence of un-
even terms in Z1. This difference also prevails in electron
spectra, but it is much less dramatic, because it concerns
mainly a fairly narrow interval of electron energies ε not
far from the maximum. We note, however, that for many
years it used to be a widespread belief that the Barkas-
Andersen effect in stopping was a phenomenon restricted
to fairly large impact parameters [33].

While we tend to consider the scaling relations dis-
cussed in this paper as being more relevant and, presum-
ably, also more well-founded than the details of our quan-
titative model, we have performed explicit comparisons
with measurements which, by and large, lead to results
that confirm the essentials of the theoretical model.

This work has been supported by the Danish Natural Science
Research Council (FNU).
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